different from $FN=SF_4$ and $CH_2=SF_4$ in this regard.

Acknowledgment. This research was supported by funds from Deutsche Forschungegemeinschaft (H.H.E.), the **US.** Army Research Office, and the National Science Foundation (D.D.D.). Miss B. Saul is acknowledged for obtaining the Raman and infrared spectra. D.D.D. also wishes to acknowledge Professor **K.** Seppelt for his assistance in this work and the Alexander von Humboldt Stiftung for a research fellowship.

Registry No. SF₅NCIF, 74542-21-5; SF₅NHF, 74542-22-6; FN=SF₄, 74542-20-4; **SF₃=N**, 15930-75-3; **CIF**, 7790-89-8; **F**₂, 7782-41-4; **TFA**, 76-05-1.

Contribution from the Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

Acylations of Pentafluorosulfanylamine, SF₅NH₂

JOSEPH S. THRASHER, JON L. HOWELL, and ALAN F. CLIFFORD*

Received June *4, 1981*

Acylation of SF5NH2 with select acyl halides has produced the corresponding N-pentafluorosulfanyl amides. The best yields were obtained in the reactions of acyl halides containing electron-deficient carbonyls. The first liquid pentafluorosulfanylcarbamyl derivative $SF₅NHC(O)F$ was prepared by the reaction of equimolar quantities of NSF₃, $COF₂$, and anhydrous HF. The reaction of SF_5NH_2 with $CIC(O)CF_2CF_2C(O)Cl$ produced not only the expected diamide $[SF_sNHC(O)CF₂]$ but also the novel cyclic imide $SF_sNC(O)CF₂CF₂C(O)$. Other *N*-pentafluorosulfanyl amides were **prepared from the reaction of SFsNCO with suitable carboxylic acids. Several of the N-pentafluorosulfanyl amides synthesized** were allowed to react with PCl₅ to produce the corresponding chloro imines. The compound SF₅NHC(O)NHSF₅ was also found to react with PCI_s to produce the carbodiimide SF₅N=C=NSF₅. The products isolated were characterized **by infrared and NMR spectroscopy, mass spectrometry, and elemental analysis.**

Introduction

In recent years there has been considerable interest in the synthesis and characterization of compounds containing five-
and six-coordinate sulfur(VI). $1-11$ This interest includes and six-coordinate sulfur(VI). $1-11$ compounds containing sulfur as the central atom surrounded by five or six ligands as well as those employing six-coordinate sulfur as a functional group (e.g., the pentafluorosulfanyl group, $SF₅$).

Compounds containing the pentafluorosulfanyl group are of

- **(1) Shreeve, J.** *Israel J. Chem.* **1978,** *17,* 1 **and references within.**
- **(2) Glemser,** *0.;* **Mews, R.,** *Angew. Chem.* **1980,** *92,* **904;** *Angew. Chem., Int. Ed. Eng.* **1980,** *19,* **883 and references within.**
- **(3) Martin, J. C.; Perozzi, E. F.** *Science (Wushington, D.C.)* **1976, 191 (4223), 154 and references within.**
- **(4) Martin, J. C.** *Top. Org. Sulphur Chem. Plenary Lect. Int. Symp. 8th* **1978, 187-206 and references within.**
- **(5) Kitazume, T.; Shreeve, J. M.** *J. Am. Chem.* **SOC. 1978,** *100,* **492.**
- **(6) Kitazume,** T.; **Shreeve, J. M.** *J. Chem.* **Soc.,** *Chem. Commun.* **1978, 1545.**
- **(7) Mews, R.** *Angew. Chem.* **1978,90,561;** *Angew. Chem., Int. Ed. Engl.* **1978, 17,** *530.*
- **(8) DesMarteau,** D. **D.; Seppelt, K.** *Angew. Chem.* **1980, 92, 659;** *Angew. Chem., Int. Ed. Engl.* **1980,** *19,* **643.**
- **(9) Kleeman,** *G.;* **Seppelt, K.** *Angew. Chem.* **1978,90,547;** *Angew. Chem., Int. Ed. Engl.* **1978,** *17,* **516.**
-
- (10) Sekiya, A.; DesMarteau, D. D*. Inorg. Chem. 1980, 19*, 1330.
(11) Seppelt, K. *Angew. Chem.* 1976, 88, 56; *Angew. Chem., Int. Ed. Engl.* **1976,** *15,* **44.**

particular interest since they often possess the advantageous properties of the parent compound sulfur hexafluoride. These properties include a high group electronegativity, a large steric bulk (greater than than of \overline{F} or CF_3), a nonfluctional hexacoordinate stereochemistry, and high thermal and hydrolytic stability.

While investigations of carbon- and oxygen-substituted SF₆ derivatives have **been** carried out in other laboratories, we have for sometime been investigating those compounds containing the N-pentafluorosulfanyl linkage. Along these lines we wish to report our results in the synthesis and characterization of several new $SF₅N$ < compounds as well as an alternate synthesis of several previously reported $SF₅N <$ compounds. Three types of reactions have been investigated: the acylation of $S_{\rm F_5}NH_2$, the reaction of $S_{\rm F_5}NCO$ with carboxylic acids, and the conversion of NSF_s amides to chloro imines by reaction with PCl_5 .

Prior to this investigation two methods for the synthesis of compounds containing **pentafluorosulfanyl-nitrogen-carbon** linkages had been reported. The first, reported by Tullock et al., involves the photolytically induced free radical reaction between $SF₅Cl$ and selected nitriles.¹² This reaction is limited in scope and provides only low yields of these materials. The chloro pentafluorosulfanylimines produced can further react to give secondary amines or alternate imines as shown by the two examples in Scheme $I^{12,13}$ **Naffer Secondary animes or atternate innies as shown by the**
 Naffer Scheme I.^{12,13}
 I
 $S_F_SCl + R_fCN \xrightarrow{h\nu} SF_sN=C(Cl)R_f$ (1)
 $S_F_SN=C(Cl)R_f + HF \xrightarrow{NaF} SF_sNHCF_2R_f$ (2)
 $S_F_SN=C(Cl)R_f + NaN_3 \rightarrow SF_sN=C(N_3)R_f$ (3)

Scheme I

$$
SF5Cl + RfCN \xrightarrow{h\nu} SF5N=C(Cl)Rf
$$
 (1)

$$
SF5N=C(Cl)Rf + HF \xrightarrow{NaF} SF5NHCF2Rf \t(2)
$$

\n
$$
SF5N=C(Cl)Rf + NaN3 \rightarrow SF5N=C(N3)Rf \t(3)
$$

$$
SF5N=C(Cl)Rf + NaN3 \rightarrow SF5N=C(N3)Rf
$$
 (3)

(12) Tullock, C. W.; Coffman, D. D.; Muetterties, E. L. *J. Am. Chem.* **SOC. 1964,86, 357.**

The other method, reported by Shreeve and co-workers,^{14,15} employs nucleophilic displacement of fluorine from a hexacoordinate sulfur(V1) species. They have found that the choice of nucleophiles is extremely limited. Only $(CH_3)_3$ SiN $(CH_3)_2$ or $LiN=C(CF_3)$ ₂ has been found to react with hexacoordinate sulfur(V1) compounds in such a way as to preserve the high coordination number and oxidation state—all others either fail to react or cause reduction of the sulfur. *Also,* these reactions proceed only under controlled low-temperature reaction conditions. Scheme I1 gives examples of reactions involving both nucleophiles.¹⁴ The example described in eq 4 has been reported only for the reaction of the silane with SF_5Cl or SF_5Br . The product shown in *eq* 5 contains a pentacoordinate sulfur(V1) and is probably formed from an intramolecular 1,3 fluoride shift since the stereochemistry is fixed and the molecule nonfluctional. This product could probably be coordinately saturated by the addition of hydrogen fluoride as in the reported reaction of HF and $CF_3SF_3=NCF_3$.¹⁶

Scheme 11

Scheme II

\n
$$
SF_{5}Cl + (CH_{3})_{2}NSi(CH_{3})_{3} \rightarrow
$$
\n
$$
trans\text{-}ClSF_{4}N(CH_{3})_{2} + FSi(CH_{3})_{3} \quad (4)
$$
\n
$$
SF_{5}Br + LiN = C(CF_{3})_{2} \rightarrow BrSF_{3} = NCF(CF_{3})_{2} + LiF
$$
\n
$$
(5)
$$

We have investigated methods which have a broader scope than either of the two aforementioned methods. These methods, which are not limited to one or several specific reagents, have allowed us to prepare several new compounds and to provide an alternate synthesis for several previously reported compounds. The scope of our investigation, as well as a discussion of the characteristics of the new compounds, is included.

Results and Discussion

Acylations of SF₅NH₂. The present investigation shows that $SF₅NH₂$ reacts readily at room temperature with various acid chlorides and fluorides containing electron-deficient carbonyl groups to produce the novel N-pentafluorosulfanyl amides, $SF₅NHC(O)R$. Since the reaction of $NSF₃$ and HF to produce $SF₅NH₂$ has been shown to be an equilibrium reaction,¹⁷ the $SF₅NH₂$ used in these reactions was generated in situ. We have also found by monitoring the reaction of $NSF₃$ and HF at -25 °C that within approximately 40 min the pressure of the reaction mixture has returned to the vapor pressure of HF at that temperature.¹⁸ Therefore, the NSF₃ and HF were allowed to react for a minimum of 35 min, and usually longer, prior to the addition of the acid chloride or fluoride. In several of the reactions with acid fluorides only 1 equiv of $HF/1$ equiv of NSF, was used since an additional equiv of HF would be produced as a byproduct in the reaction.

Remarkably enough, the analogous acylation reactions of fluorosulfonamide, FSO_2NH_2 , have not been reported; however, (trifluoroacetyl)fluorosulfonylimide, $\text{FSO}_2\text{NHC}(O)\text{CF}_3$, has been prepared via an alternate route^{19,20} as shown in eq 6. Thus, $SF₅NH₂$ was first allowed to react with $CF₃C(O)F$

$$
CF3COOH + FSO2N=PCl3 \rightarrow
$$

\n
$$
FSO2NHC(O)CF3 + O=PCl3
$$
 (6)

-
- **(13)** Logothetis, A. L. *J. Org. Chem.* **1964,** *29,* **3049. (14)** Kitazume, T.; Shreeve, **J. M.** *J. Chem. Soc., Chem. Commun.* **1976, 982.**
- (15) Kitazume, T.; Shreeve, J. M. J. Am. Chem. Soc. 1977, 99, 3690.
(16) Yu, S. L.; Shreeve, J. M. *Inorg. Chem.* 1976, 15, 14.
(17) Clifford, A. F.; Duncan, L. C. *Inorg. Chem.* 1970, 5, 692.
(18) Clifford, A. F.; Anderso
-
-
- Heinze, P. R. Dissertation, Göttingen, 1968.
- (20) **Roesky,** H. W.; Giere, H. H.; Babb, D. P. Inorg. *Chem.* **1970,9, 1076.**

in order to produce the corresponding N-pentafluorosulfanyl derivative. This amide $SF₅NHC(O)CF₃$, a white solid with approximately 10 torr vapor pressure at 25 "C, was produced in 79% yield and was identified by its NMR, IR, and mass spectral analyses. tral analyses.
CF₃C(O)F + SF₅NH₂ \rightarrow SF₅NHC(O)CF₃ + HF (7)

$$
CF3C(O)F + SF5NH2 \rightarrow SF5NHC(O)CF3 + HF (7)
$$

The isolation of $SF₅NHC(O)CF₃$ from the above reaction led us to speculate that $SF₅NHC(O)F$ could be made from the reaction of SF_5NH_2 and COF_2 . Previously the only product isolated from this reaction was $SF₅NCO$ (eq 8);²¹
COF₂ + $SF₅NH₂$ \rightarrow $SF₅NCO$ + 2HF (8)

$$
COF2 + SF5NH2 \rightarrow SF5NCO + 2HF
$$
 (8)

however, the reaction mixture was always placed on sodium fluoride to remove the excess HF. We have found that if an equimolar reaction mixture of NSF_3 , COF_2 , and AHF is examined without being placed on NaF, the product $SF₅NHC-$ (0)F is obtained in high yield. This product is a colorless liquid, whereas all previously reported pentafluorosulfanylcarbamyl derivatives have been white crystalline solids. $12,21-23$ The compound $SF₅NHC(O)F$ has a vapor pressure of approximately 50 torr at 25 \degree C and spontaneously loses HF when in contact with glass or NaF.

The acylation of SF_5NH_2 by oxalyl chloride produced the corresponding diamide $SF₅NHC(O)C(O)NHSF₅$ in 78% yield, while acylation by perfluorosuccinyl chloride yielded not only the expected diamide $[SF₅NHC(O)CF₂]$ ₂ but also the novel cyclic succinimide $SF₅NC(O)CF₂CF₂C(O)$. The succinimide, obtained in 43% yield, is a white, extremely airsensitive solid with a vapor pressure of approximately 1 torr at 25 "C. Its identity was confirmed by exact mass spectrometry along with IR and NMR spectroscopy and E1 mass

spectrometry. The acylation of $SF₅NH₂$ can even be accomplished by acetyl chloride and acrylyl chloride, but these seem to be the extreme limits of the synthetic method since low yields are obtained in both reactions. The acrylamide $SF₅NHC(O)C H=CH₂$ is not the isolated product in the reaction with acrylyl chloride, as the HCl generated readily saturated the double bond to give $SF₅NHC(O)CH₂CH₂Cl$ (eq 9). The reaction

$$
CH2=CHC(O)Cl + SF5NH2 \rightarrow SF5NHC(O)CH=CH2+ HCI \rightarrow SF5NHC(O)CH2CH2Cl (9)
$$

of $SF₅NH₂$ with malonyl chloride did not yield a product containing the pentafluorosulfanyl moiety, $22,24$ and no reaction occurred between the amine and benzoyl chloride.

Reactions of SF,NCO with Carboxylic Acids. The reaction of $SF₅NCO$ with certain carboxylic acids provides an alternate synthetic method to the previously unknown $SF₅NHC(O)R$ compounds. The reaction is believed to pass through a mixed-acid anhydride intermediate which readily loses $CO₂$ to give the corresponding N-pentafluorosulfanyl amide (eq 10); however, no attempts were made to isolate such intermediates

in the reactions being discussed.
\nSF₅NCO + RCOOH
$$
\rightarrow
$$
 [SF₅NHC(O)O(O)CR] \rightarrow
\nSF₅NHC(O)R + CO₂ (10)

Both CH₃COOH and CH₂=CHCOOH were found to react readily with SF₅NCO at 25 °C. The yields of 98 and 35% for $SF₅NHC(O)CH₃$ and $SF₅NHC(O)CH=CH₂$, respec-

- **(23)** Thrasher, J. **S.;** Howell, J. L.; Clifford, A. F.; unpublished research. The reaction of $SF₅NH₂$ and malonyl chloride was again repeated with
- similar results.

⁽²¹⁾ Duncan, L. C.; Rhyne, T. C.; Clifford, A. F.; Shaddix, **R.** E.; Thompson, J. W. *J. Inorg. Nucl. Chem., Suppl.* **1976, 33.**

⁽²²⁾ Shaddix, **R.** E. Master's Thesis, Virginia Polytechnic Institute and State University, **1974.**

Table I. NMR Data

tively, make this a better synthetic method for preparing these amides than the corresponding acylations of SF_5NH_2 . Unlike the room-temperature reaction of $CH₃COOH$ or $CH₂=CH$ -COOH with $SF₅NCO$, a temperature of 60 °C was required before malonic acid would react with $SF₅NCO$. In this case both the amide-acid $SF₅NHC(O)CH₂COOH$ and the diamide $SF₅NHC(O)CH₂C(O)NHSF₅$ were obtained from the product mixture. We had previously synthesized this diamide from the reaction of $SF₅NH₂$ with carbon suboxide²² as shown in eq 11.

$2SF₅NH₂ + C₃O₂ \rightarrow SF₅NHC(O)CH₂C(O)NHSF₅ (11)$ 2 SF.NCO + CH₂(COOH)

$$
SF5NCO + CH2(COOH)2 \rightarrow
$$

SF₅NHC(O)CH₂C(O)NHSF₅ + 2CO₂ (12)

Pentafluorosulfanyl isocyanate failed to react with carboxylic acids in which the carboxylate group is electron deficient, including CCl₃COOH and CF_3OOH . It also failed to react with PhCOOH presumably due to steric hindrance as well as the weakly nucleophilic nature of the carboxylate group. The sulfonyl analogue, fluorosulfonyl isocyanate (FSO_2NCO), has been reported to react with $CCl₃COOH²⁵$ but not with $CF₃$ -COOH,20 thus indicating that this isocyanate is slightly more reactive than $SF₅NCO$. The compound $CISO₂NCO$ has also been reported to react with PhCOOH 26 to yield ClSO₂NHC-(0)Ph. Only the **N-(pentafluorosulfany1)benzamides** could not be prepared by either synthetic method, but work is continuing in our laboratory on synthesizing this other class of compounds.

Chloro Imines. Pentafluorosulfanylimines were prepared from PCl_5 and the appropriate amide (eq 13). This reaction

$$
SF5NHC(O)R + PCl5 \xrightarrow[60-100 °C]{CCl4}SF5N=C(Cl)R + POCl3 + HCl (13)
$$

has also been successfully employed by Roesky^{20,25,27} in the synthesis of N-fluorosulfonylimines and is a general method for the synthesis of chloroimines from amides.²⁸ This synthetic procedure provides an alternate method for the preparation of chloro pentafluorosulfanylimines previously unavailable except through the photolytic method of Tullock et al.¹² Of

(26) Graf, R. *Angew. Chem.* **1968,80, 179;** *Angew. Chem., Int. Ed. Engl.* **1968, 7, 172.**

Table II. ¹⁹F Chemical Shifts of the Sulfonyl Fluorine in $FSO₂NHC(O)CX₃$ and $FSO₂N=C(Cl)CX₃$ Compounds^{20,25}

the several representative amides treated with PCl_5 , only the product $SF_5N=C(CI)CH_3$ had not been previously synthesized. The chloro imines are liquids at room temperature and are surprisingly stable toward hydrolysis.20,28

One amide not prepared by the previously described procedures, of long term interest to us, is $SF₅NHC(O)NHSF₅.²¹$ This amide also reacts with PCls producing the carbodiimide $SF_sN=C=NSF_s$. Equation 15 shows a method previously

$$
SF5NHC(O)NHSF5 + PCI5 $\frac{CCI_4}{60 \text{ }^{\circ}C}$
\n
$$
SF5N = C = NSF5 + POCI3 + 2HCl (14)
$$
\n
$$
SF5NH2 + SF5N = CCI2 \rightarrow SF5N = C = NSF5 + 2HCl (15)
$$
$$

reported by us^{29} for the synthesis of this carbodiimide. The new procedure has allowed a more complete analysis of this compound. The physical characteristics for the carbodiimide are included with those of the chloro imines.

NMR **Parameters.** The fluorine-19 NMR spectrum of a pentafluorosulfanyl group is a powerful diagnostic proof for the positive identification of compounds containing this moiety. This is due to its distinctive AB_4 splitting pattern. All of the compounds described in this paper exhibit this distinctive splitting pattern, and some interesting observations have emerged from the study of the 19F NMR spectral parameters.

The ¹⁹F NMR spectrum of $SF₅NHC(O)F$ exhibits an atypical AB_4X pattern seen before only in $SF₅OF.³⁰$ The spectrum is very similar to that of $SF₅OF$ initially described by Cady et al.^{30a} as a doublet and an asymmetrical sextet. Cady^{30b} as well as Harris and Packer^{30c} have since shown that the spectrum of $SF₅OF$ consists of many more lines and that the overall appearance is merely a consequence of the AB_4X

⁽²⁵⁾ Roesky, H. W.; Giere, H. H. *Chem. Ber.* **1969,** *102,* **3707.**

⁽²⁷⁾ Roesky, H. W. *Angew. Chem.* **1969,81, 119;** *Angew. Chem., Int. Ed.*

Engl. **1969,** *8,* **136. (28)** "The Chemistry of the Carbon-Nitrogen **Double** Bond"; S. Patai, **Ed.;** Interscience: New York, **1970;** p **⁶⁰¹**

⁽²⁹⁾ Clifford, A. F.; Shanzer, A. J. *Fluorine Chem.* **1976, 7, 65.**

⁽³⁰⁾ (a) Dudley, F. **B.;** Shoolery, J. N.; Cady, G. H. J. *Am. Chem.* **Soc. 1956,** *78,* **568.** (b) Cady, G. H.; Merill, C. I. J. *Am. Chem.* **SOC. 1962,84, 2260.** (c) Harris, R. K.; Packer, K. J. J. *Chem. SOC.* **1962, 3077.**

Figure 1. ¹⁹F NMR spectra comparison of the sulfur(VI)-fluorine region in **SF5NHC(0)CH3, SF5NHC(0)CF3,** and **SF,NC(O)C-** $F_2CF_2C(O)$ (relative to CCl_3F). **Figure 1.** ¹⁹
region in SF
 \overline{F}_2 CF₂C(O)

spin system. Several other pentafluorosulfanyl compounds, including SF_5OOSF_5 , SF_5OOCF_3 , and SF_5SF_5 , have also been shown to exhibit atypical AB_4 patterns due to the small chemical shift difference between the A and B nuclei.^{31,32}

It is widely known that **19F NMR** chemical shift values vary significantly even in compounds containing slightly different substituents. This effect can be seen in the case of the fluorosulfonyl amides and imines^{18,23} as shown in Table II. The sulfonyl fluorine is deshielded, sometimes nonuniformly, by the introduction of chlorine and fluorine substituents as much as five bonds away. A similar effect is observed on the chemical shifts of the axial and equatorial fluorines of the pentafluorosulfanyl amides and imines shown in Table I; however, the axial fluorine is often more influenced by a change of substituents. This is especially clear when one examines the S(V1) region of the **19F NMR** spectrum of both **SF5NHC(0)CH3** and **SF,NHC(0)CF3** as shown in Figure 1. Since the downfield shifts of the axial and equatorial fluorine resonances in $SF₅NHC(O)CF₃$ are not relative, the overall appearance of the splitting pattern changes remarkably as the SF₅ group moves toward an AX₄ spin system. The fact that the axial fluorine is often more influenced by substitution in SF₅R compounds has been observed by others^{33,34} and explained as a trans effect.³⁴

Several reports have appeared in the literature concerning significant solvent effects on **I9F NMR** chemical shifts.35

- **(31) (a) Merrill, C. I.; Cady, G. H.** *J. Am. Chem. SOC.* **1961,83, 298. (b) Merrill, C. I.; Williamson, S. M.; Cady, G. H.; Eggers, Jr., D. F.** *Inorg. Chem.* **1962,** *I,* **215.**
- **(32) Finer, E. G.; Harris, R. K.** *Spectrochimica Acta, Parr* **A 1968,** *24A,* **1939.**
- **(33) Boden, N.; Emsley, J. W.; Feeney, J.; Sutcliffe, L. H.** *Trans. Faraday SOC.* **1963, 59, 620.**
- **(34) Seppelt, K.** *Z. Anorg. Allg. Chem.* **1973, 399, 65.**

Another example of this with a unique difference is reported here. Analysis of the **19F NMR** of **[SF,NHC(O)],** taken in acetone and $Me₂SO-d₆$ shows that not only are the chemical shifts different but that the axial fluorine is substantially more affected by the change of solvents than are the equatorial fluorines. This solvent effect is most likely due to an interaction which disrupts hydrogen bonding in the compound. As shown in Table I, this solvent-induced magnetic disruption is of sufficient strength that the chemical shift of the equatorial fluorines changes by 1.4 ppm, while the chemical shift of the fluorine trans to the amide nitrogen changes by 6.9 ppm. This effect has been observed previously by μs^{36} and is the only report of the nonrelative shifting of the axial and equatorial fluorine resonances of a pentafluorosulfanyl group as an effect of solvent.

The ¹³C NMR spectrum of $[SF₅NHC(0)]₂$ also proves to be interesting, especially when compared to that of **(SF,N-** H ₂CO. In $[SF₅NHC(O)]₂$ the carbon resonance centered at 156.1 ppm is a quintet $(\bar{J}_{SF_4-C} = 3.4 \text{ Hz})$ due to coupling with four equatorial fluorines of an **SF,** group, while in **(S-F5NH),C0** the carbon resonance at 161.i ppm is a sharp singlet. These observations may be best explained by considering "through-space" coupling with the fact that in SF_5X compounds, where X contains fluorine, $|J_{B}x|$ is always much larger than $|J_{AX}|^{32,37}$

Another important, and as yet unexplained, feature of compounds containing the pentafluorosulfanyl moiety involves the relative chemical shifts of the axial and equatorial fluorines with respect to each other. As shown in Figure 1, the resonance of the axial fluorine in both amides appears downfield from the resonance of the equatorial fluorines, while the opposite is true for the succinimide. This is also the case when comparing the chloro imines to the carbodiimide as shown in Table I. Generally the resonance of the axial fluorine in an $SF₅$ -nitrogen compound appears farthest downfield; however, there is a reasonable number of exceptions, including SF₅-**N=C=0,²¹ SF₅N=C=S,²³ SF₅N=SF₂,³⁸ SF₅N=S(O)F₂,³⁹** and **SF5N(CF3)2.40 No** unified theory has yet been proposed or reported to explain these observations.

Infrared Spectra. All of the amides exhibit the **N-H** stretching frequency in the $3430-3180$ -cm⁻¹ region, as well as the carbonyl amide I stretch in the 1830-1690-cm⁻¹ region with the expected higher energy shift with increasing electronegativity of the substituent. For example, the amide I stretch of **SF,NHC(O)F** has the highest frequency at 1830 cm⁻¹ followed by the amide I stretch of $SF_5NHC(O)CF_3$ at 1800 cm-'. The amides also show the characteristic **S-F** stretching and wagging frequencies of the SF₅ group. These appear at 950–830 and 600 ± 12 cm⁻¹, respectively.

The pentafluorosulfanylimines show a strong $N=$ C stretching frequency in the high 1600 cm^{-1} region which is typical of this type of compound. They also show the characteristic S-F stretching and wagging frequencies of the SF_s group. The compound $SF₅N=C=NSF₅$ also has the characteristic SF₅ bands as well as the band normally associated with the $N=C=N$ group⁴¹ (2154 cm⁻¹).

- **(36) Clifford, A. F.; Thrasher, J. S.; Newman, C. R.; Maurer, D. E.; Howell, J.** L., **paper presented at the 178th National meeting of the America Chemical Society, Honolulu, HI, Aug 1979.**
- **(37) Rogers, M. T.; Graham, J. D.** *J. Am. Chem. SOC.* **1962,** *84,* **3666.**
- **(38) Cohen, B.; Hooper, T. R.; Peacock, R. D.** *J. Chem. Soc., Chem. Com- mun.* **1965, 32.**
-
-
- (39) Höfer, R.; Glemser, O. Z. Anorg. Allg. Chem. 1975, 416, 263.
(40) Dobbie, R. C. J. Chem. Soc. A 1966, 1555.
(41) (a) Khorana, H. G. Chem. Rev. 1953, 53, 145. (b) Meakin, G. D.; **Moss, R. J.** *J. Chem. SOC.* **1957, 993.**

^{(35) (}a) Evans, D. F. *Proc. Chem. SOC.* **1958, 115. (b) Glick, R. E.; Eh**renson, S. J. J. Phys. Chem. 1958, 62, 1599. (c) Evans, D. F. J. Chem.
Soc. 1960, 877. (d) Johannesen, R. B.; Brinckman, F. E.; Coyle, T. D.
J. Phys. Chem. 1968, 72, 660. (e) Emsley, J. W.; Philips, L. Mol. Phys. **1966,** *11,* **437.**

This investigation has demonstrated synthetic methods which allow the preparation of a variety of N -pentafluorosulfanyl compounds. These methods allow the synthesis of alkyl, perfluoroalkyl, cyclic and F-formyl amides as well as providing an alternate, more versatile synthesis of $N-SF₅$ imines. Each compound has been identified through its infrared, mass spectroscopic and **NMR** spectra.

Several new, exciting, and heretofore unreported observations about the NMR spectra of these compounds have been made.

Experimental Section

The compounds synthesized were analyzed by infrared and nuclear magnetic resonance spectroscopy and mass spectrometry and where possible by C, H, N, and **S** analysis.

An all-Pyrex glass high-vacuum system was employed for handling the reactants and products except for anhydrous HF (AHF) which was handled on a metal vacuum system. Infrared spectra were obtained on a Beckman **20A-X** infrared spectrophotometer, either on gases, pressure **1-100** torr, or on mulls in either halocarbon or mineral oil. Mass spectra were obtained on either a Hitachi Perkin-Elmer RMU-7 mass spectrometer, a Finnigan Model **3200** quadrupole mass spectrometer, or a Varian MAT **11 2** high-resolution mass spectrometer using either a solid inlet probe or a controlledgas-flow inlet. The I9F and 'H NMR spectra were taken on either a JEOL PS-100 or a Varian **EM-390** nuclear magnetic resonance spectrometer using CCl_3F and $(\text{CH}_3)_4\text{Si}$, respectively, as internal standards. The ¹³C NMR spectra were taken on a JEOL FX 60Q nuclear magnetic resonance spectrometer using $Me₂SO-d₆$ as an internal standard. Elemental analyses were obtained from the Chemistry Department's Perkin-Elmer **240** elemental analyzer or from Galbraith Laboratories, Knoxville, TN. Melting points were taken on a Mel-Temp apparatus and are uncorrected.

All solvents and reagents were distilled or sublimed prior to use. Phosphorus pentachloride was used only **in** an inert (Ar) atmosphere box and was not purified prior to use. The compounds $\widehat{\text{COF}}_2$,⁴ $CF₃C(O)F₃⁴³ SF₅NCO₃²¹$ and $SF₅NHC(O)NHSF₅²¹$ were synthesized and purified by known literature methods. The compound $SF₅NH₂¹⁷$ was produced in situ from the reaction of $NSF₃$ and HF.

Preparation **of SF,NHC(O)F.** In a typical reaction, **150** mmol each of NSF₃, COF₂, and HF were condensed into a 75-mL stainless-steel cylinder at -196 °C. After the mixture was allowed to react for 5 days at room temperature, the volatile components were transferred onto a NaF scrubber while the reaction cylinder was held at -50 °C. The product could then be removed from the cylinder as a colorless liquid. The $SF₅NHC(O)F$ has a vapor pressure of \sim 50 torr at 25 ^oC and spontaneously loses HF when in contact with glass or NaF. The yield $(\sim 50\%)$ was determined by removing the product to a NaF scrubber for several hours and then measuring the quantity of $SF₅NCO$ recovered. IR (capillary film): **3260** (vs), **2980** (m), **2720** (w), **1830** (vs), **1500** (vs), **1350** (w), **1215** (vs), **875** (vs), **790** (m), **750** (m), **705** (m), **655** (m), **605-575 (s)** cm-I. **Mass** spectrum **(70** eV) *m/e* (relative intensity): **170 [M** - F]' **(0.7), 169** [M - HF]' **(15.3), 150** [SF4NCO]+ **(34.4), 127** [SF,]' **(100.0), 108 (7.4), 104 (9.3), 103 (3.2), 89** (50.0), **70 (16.0), 51 (7.8), 47** [COF]' **(84.4), 44 (31.3), 43 (3.4), 42 (7.4).** 'H NMR: 6 **9.28 (s,** NH).

Anal. Calcd for CHNSF,O: C, **6.35;** H, **0.53;** N, **7.54; S, 16.93.** Found: C, **6.41;** H, **0.48,** N, **7.54; S, 17.58.**

Preparation of SF₅NHC(O)CF₃. Gaseous NSF₃ (10.0 mmol) and HF **(0.25** mL, **12.5** mmol) were condensed into a Kel-F reactor at -196 °C and were allowed to react at room temperature. After 12 h, CF₃C(O)F (10.0 mmol) was condensed into the reaction vessel and the solution was warmed slowly to ambient temperature. Within the period of **1** week a product had precipitated from the reaction mixture. The volatile products were then removed to a NaF scrubber while the temperature of the reaction vessel was maintained between **-60** and -15 °C. The product remaining in the reaction vessel was then further purified by trap-to-trap distillation, the -30 °C trap retaining the SF₅NHC(O)CF₃ (7.9 mmol); 79.0% yield. The compound is an easily sublimable white solid with a vapor pressure of \sim 10 torr at room temperature; mp 49-51 °C. IR (gas): 34.30 (s), 1800 (s), 1485 **(s), 1310** (m), **1230 (s), 1185 (s), 1130 (s), 950-875** (s), **780** (w), **730** (w), **665** (m), **612** (m), **590** (w), **560** (w) cm-I. Mass spectrum **(70** eV) *m/e* (relative intensity): **239** M' **(<0.1), 220** [M - F]+ **(<0.1), 104 (29.4), 97 (5.3), 89 (18.8), 70 (7.7), 69** [CF,]' **(79.4), 51 (8.2), 50 (7.1), 47 (7.7), 43 (12.9) 31 (4.1).** IH NMR: 6 **12.38 (s,** NH). = **-289** Hz)." **170** $[SF₁NHCO]$ ⁺ (33.5), 150 $[SF₄NCO]$ ⁺ (4.1), 127 $[SF₅]$ ⁺ (100.0), **13C NMR:** δ **(CO) 152.8 (q)** $(^{2}J_{C-F} = 40 \text{ Hz})$ **;** δ **(CF₃) 116.3 (q)** $(^{1}J_{C-F}$

Attempted Preparation of SF₅NHC(O)CF₃. SF₅NCO (2 mmol) and CF₃COOH (2 mmol) were condensed at -196 °C into a 75-mL glass reaction cylinder containing dry $(C_2H_5)_2O$ (12.0 mmol). The reaction mixture was allowed to warm slowly to room temperature, and after several hours the volatile components were checked by infrared spectroscopy. There was no evidence for reaction; therefore, the reaction mixture was heated at 70 °C for 48 h. Again the IR spectrum of the volatile components showed only unreacted SF, NCO and CF₃COOH along with the solvent $(C_2H_5)_2O$.

Attempted Preparation of SF₅NHC(O)CCl₃. A 5-mmol sample of SF_sNCO was condensed onto freshly sublimed CCl₃COOH (0.60 g, 3.67 mmol) in a 75-mL glass reaction cylinder at -196 °C. The reaction mixture was warmed to room temperature, and after **12** h the volatile components were examined by infrared spectroscopy. Since no reaction had occurred, several milliliters of dry THF was condensed into the reaction flask at -196 °C and the reaction mixture was heated at 70 \textdegree C for \sim 36 h. Even after the reaction mixture was heated at 100 °C for an additional 6 h the IR spectrum showed no evidence for reaction.

Preparation of SF₅NHC(O)CH₃, Method A. Thiazyl trifluoride, NSF3, **(5** mmol) and HF **(0.17** mL, **8** mmol) were condensed into a Kel-F reactor at -196 °C and allowed to react overnight prior to the addition of freshly distilled CH3C(0)Cl **(5** mmol). After **9** days the volatile products of the reaction were moved onto a NaF scrubber and **0.165 g** of a crude solid product was collected. Vacuum sublimation yielded 0.105 g of a white compound analyzed to be $SF₅N-$ HC(0)CH3 **(14.19%** yield; mp **88-90** "C).

Method B. The isocyanate, SF, NCO (5 mmol), was condensed onto freshly distilled CH₃COOH (5 mmol) in a 75-mL glass reaction vessel at -196 °C. The mixture was warmed to room temperature and allowed to stand for **48** h at that temperature. At this time a quantity of gas in the cylinder was removed for analysis. Infrared spectroscopy showed that the gas recovered was essentially $CO₂$. After removal of the volatile products, the resulting solid residue was sublimed in vacuo in yield reasonably pure $SF₅NHC(O)CH₃ (0.915)$ **g, 98.9%** yield).

SFSNHC(0)CH3: IR (mull) **3180** (vs), **2960 (s), 1720** (vs), **1680** (vs), **1510** (vs), **1250** (m), **1015** (w), **880** (vs), **765** (m), **685** (m), **600** (m) , 565 (s) cm^{-1} ; mass spectrum (70 eV) m/e (relative intensity) **185 M' (3.4), 170** [SF,NHCO]+ **(2.7), 150** [SF,NCO]+ **(l.O), 127** [NS]+ **(100.0), 43 (14.9), 31 (2.2), 29 (2.4);** IH NMR *b* **11.93 (s),** = **101.6** Hz). [SF,]" **(39.2), 104 (8.1), 89 (18.9), 70 (5.4), 51 (l,O), 47 (l.O), 46** NH), 1.97 (s, CH₃); ¹³C NMR: δ 164.8 (s, CO), 23.4 (q, CH₃, ¹JC_{-H}

Anal. Calcd for C_iH₄NSF₅O: C, 12.97; H, 2.16; N, 7.57; S, 17.30. Found: C, **12.97;** H, **1.95;** N, **7.59; S, 17.41.**

Attempted Preparation of SF₅NHC(O)Ph. Method A. Hydrogen fluoride (0.4 mL, 20.0 mmol) was condensed with NSF₃ (10.0 mmol) in a Kel-F reactor at -196 °C. The mixture was allowed to warm to room temperature over **20** min and remained at that temperature for 15 min. The mixture was then refrozen, and PhC(0)Cl **(10.0** mmol) was added. After a period of **2** weeks, no precipitate had yet formed in the Kel-F reactor and the volatile materials were removed
to a NaF scrubber. No evidence for the production of $SF_3NHC(O)Ph$ was found upon examination of either the volatile materials or contents of the Kel-F reactor.

Method B. The isocyanate $SF₅NCO$ (3 mmol) and $(C₂H₅)₂O$ (7.4 mmol) were condensed onto PhCOOH (0.366 g, 3.0 mmol) in a 75-mL glass reaction cylinder at -196 °C. The reaction mixture was warmed slowly to room temperature and heated at 60 °C overnight. Examination of the IR spectrum of the reaction volatiles revealed that no CO₂ had been formed. The reaction mixture was then heated at 95-100 °C for 1 week, and infrared analysis showed the absence of $SF₅NCO$ and $CO₂$ but the presence of $SO₂F₂$.

Preparation of SF₅NHC(O)CH=CH₂. The isocyanate, SF₅NCO, **(1 2.0** mmol) and dried CHz=CHCOOH **(1 1.25** mmol) were con-

⁽⁴³⁾ Olah, *G.* **A.; Kuhn, S. J.** *J. Org. Chem.* **1961, 26, 237.**

⁽⁴⁴⁾ Signs of coupling constants chosen on basis of conclusions in: Tiers, G. **V. D.** *J. Am. Chem.* **SOC. 1962,84, 3912;** *Phys. Chem.* **1963,67,928.**

densed together at -196 °C into a 500-mL round-bottomed flask, and the mixture was allowed to warm to room temperature. After 4 days, 18.0 mmol of volatile materials containing $CO₂$, NSF₃, SiF₄, and some unreacted SF₅NCO were removed. Several vacuum sublimations gave $SF₅NHC(O)CH=CH₂ (0.79 g, 4.0 mmol, 35.6% yield) in reasonable$ purity: mp 94-96 "C.

 $S_{\rm s}$ NHC(O)CH=CH₂: IR (mull) 3315 (m), 3010 (w), 2995 (w), 1705 (s), 1680 (m), 1630 (w), 1510 (s), 1415 (w), 1205 (m), 930-860 (vs), 720 (s), 590 (vs) cm-I; mass spectrum (70 eV) *m/e* (relative intensity) 197 M⁺ (2.2), 170 [SF₅NHCO]⁺ (0.6), 127 [SF₅]⁺ (17.7), 104 (2.0), 89 (10.1), 70 (2.9), 56 (4.3), 55 $[CH₂=CHCO]⁺$ (100.0), 44 (4.9), 43 (12.5), 27 (65.2), 25 (1 1.6), 19 (50.0); IH NMR 6 12.65 (s, NH), 6.35 (m, CH_A), δ 6.28 (m, CH_B), 5.87 (m, CH_X, $J_{AX} = 2.3$ Hz , $J_{BX} = 9.6$ Hz, $J_{AB} = 16.9$ Hz);

$$
\left[\begin{matrix} H_{\mathbf{B}} \\ S_{\mathsf{F}_{\mathbf{S}}NHC(0)} \end{matrix}\right]^{H_{\mathbf{B}}} = c \left(\begin{matrix} H_{\mathbf{X}} \\ H_{\mathbf{A}} \end{matrix}\right)
$$

¹³C NMR δ 159.6 (m, CO), 130.7 (t of m, CH₂, ¹J_{C-H} = 161.1 Hz), 128.9 (d of m, CH, $^{1}J_{\text{C-H}} = 167.0 \text{ Hz}$).

Anal. Calcd for C₃H₄NSF₅O: C, 18.27; H, 2.03; N, 7.11; S, 16.24. Found: C, 17.91; H, 1.93; N, 7.32; S, 16.80.

Preparation of SF₅NHC(O)CH₂CH₂CI. Thiazyl trifluoride, NSF₃ (6.0 mmol), and HF (0.25 mL, 12.5 mmol) were condensed into a Kel-F reactor at -196 °C and allowed to react at room temperature for 5-6 h before refreezing to -196 $^{\circ}$ C and condensing in CH₂=C-HC(0)Cl (5.0 mmol). After this mixture was allowed to react for 11 days at room temperature, the volatile materials were transferred to a NaF scrubber. The syrupy residue and white solid remaining in the Kel-F reactor were dissolved in acetone and transferred to a sublimator. From this product mixture, a white solid, $SF₅NHC-$ (O)CH₂CH₂Cl (0.035 g, 3.0% yield), was sublimed at about 40 °C. The ¹H and ¹⁹F NMR spectra run on the crude product mixture showed the presence of small quantities of $SF₅NHC(O)CH=CH₂$ as well as $SF₅NHC(O)NHSF₅$.

SF₅NHC(O)CH₂CH₂Cl: mp 100-102 °C; IR (mull), 3200 (s), 2970 (s), 2740 (m), 1710 (s), 1500 (s), 1420 (s), 1370 (m), 1290 (m), 1230 (m), 1200 (m), 1140 (m), 1030 (m), 980-800 (vs), 755 (m), 718 (w), 680 (w), 650 (m), 600-555 (vs) cm-'; mass spectrum (70 eV) m/e (relative intensity) 235, 233, M⁺ (0.6, 1.7), 198 [M - Cl]⁺ (4.7), 170 ${\rm [SF_{5}NHCO]}^{+}$ (3.3), 150 ${\rm [SF_{4}NCO]}^{+}$ (3.3), 127 ${\rm [SF_{5}]}^{+}$ (19.5), 104 (1.6), 102 (3.1), 102 (4.7), 101 (5.7), 93, 91 65, 63 $[ClCH₂CH₂]⁺$ (21.9, 65.5), 55 (18.2), 49 (6.8), 47 (13.5), 44 $(13.0), 43$ $(8.3), 42$ $(10.4), 36$ $(6.3), 27$ $(100.0), 26$ $(15.6);$ ¹H NMR Hz). $[ClCH₂CH₂CO]⁺$ (25.0, 75.0), 89 (17.2), 87 (4.2), 85 (12.5), 70 (5.2), δ 12.26 (s, NH), 3.77 (t, CH₂Cl), 2.76 (t, C(O)CH₂, $J_{CH_2-CH_2}$ = 7.0

Anal. Calcd for $C_3H_5NSF_5ClO$: C, 15.45; H, 2.15; N, 6.01; S, 13.73. Found: C, 15.70, H, 1.99; N, 5.98; S, 13.90.

Preparation of SF,NHC(O)C(O)NHSF,. A 10-mmol sample of NSF₃ and HF (0.25 mL, 12.5 mmol) were condensed into a Kel-F reactor at -196 °C and allowed to react overnight at room temperature before being refrozen to -196 °C and ClC(O)C(O)Cl (4.0 mmol) being condensed in. The reaction mixture was then allowed to warm slowly to room temperature. After 12 days the volatile reaction products were removed to a NaF scrubber. Vacuum sublimation of the remaining product mixture at 60-70 "C yielded the white solid SF,NHC(O)C(O)NHSF, (0.83 **g,** 78.1% yield; mp 220 "C); IR (mull) 3260 (s), 1725 (vs), 1450 (s), 1302 (m), 1170 (m), 935-835 (vs), 826 (m), 667 (m), 595–585 (s) cm⁻¹; mass spectrum (70 eV) *m/e* (relative intensity) 340 M⁺ (0.1), 321 [M - F]⁺ (0.1), 297 (0.1), 170 $124(15.1), 112(0.7), 108(1.0), 104(9.9), 89(10.4), 70(3.0), 67$ (1.0) 58 (1.1); chemical ionization mass spectrum (isobutane) *m/e* (relative intensity) 341 $[M + H]^+$ (0.1), 340 M⁺ (0.1); ¹H NMR $(Me₂SO-d₆)$ δ 11.96 (br s, NH), ¹H NMR (acetone) δ 11.78 (br s, $[SF₅NHCO]⁺$ (35.7), 150 $[SF₄NCO]⁺$ (2.2), 127 $[SF₅]⁺$ (100.0), NH); ¹³C NMR δ 156.1 (q, CO, J_{SF_4-C} = 3.4 Hz).

Anal. Calcd for $C_2H_2N_2S_2F_{10}O_2$: C, 7.06; H, 0.59; N, 8.24; S, 18.82. Found: C, 7.13; H, 0.53; N, 8.41; S, 19.02.

Preparation of SF₅NHC(O)CH₂C(O)NHSF, and SF₅NHC(O)C-**H₂C(O)OH.** The isocyanate, SF₅NCO, (10.0 mmol) was condensed into a 75-mL glass reaction cylinder containing sublimed $CH₂(CO-$ OH), (4.0 mmol) dissolved in several milliliters of dry THF. The reaction mixture was then heated at 60 °C for 48 h, at which time the volatile materials, consisting of $CO₂$, THF, and unreacted SF_S-

NCO, were removed. The remaining solid residue was removed to a vacuum sublimator, and after several fractional sublimations unreacted $CH_2(COOH)_2$, $SF_5NHC(O)CH_2C(O)OH$, and SF_5NHC - $(O)CH₂C(O)NHSF₅$ were separated in reasonable purity. Not enough $SF₅NHC(O)CH₂C(O)OH$ was isolated for elemental analysis, and thus this compound has been identified only by IR, NMR, and mass spectral analyses. The yield of $SF_sNHC(O)CH₂C(O)NHSF_s$ was far lower than the 80% yield previously reported in the reaction of $SF₅NH₂$ and $C₃O₂.²²$

 $SF₅NHC(O)CH₂C(O)NHSF₅: mp 170 °C dec; IR (mull) 3280$ (m), 2980 (w), 1735 (m), 1700 (s), 1508 (m), 1405 (m), 1335 (m), 1272 (m), 1220 (m), 1170 (s), 940-850 (s), 770 (m), 600 (s) cm-I; mass spectrum (70 eV) *m/e* (relative intensity) 354 M+ (2.0), 335 $[M - F]$ ⁺ (0.2), 294 (1.2), 212 [SF₅NHC(O)CH₂C(O)]⁺ (29.6), 194 $(1.5), 193 (1.0), 185 (SF₅NHC(O)CH₃]$ ⁺ (38.0), 170 [SF₅NHCO]⁺ (13.6), 169 (0.8), 150 [SF4NCO]+ (11.2), 143 (1.2), 139 (2.1), 127 $[\text{SF}_5]^{+}$ (100.0), 124 (6.2), 117 (1.1), 112 (1.6), 105 (3.1) 104 (9.7), 102 (13.3), 101 (5.5), 100 (4.1), 89 (37.4), 70 (8.2), 69 (21.1), 67 (10.0), 65 (3.7); chemical ionization mass spectrum (isobutane) *m/e* (relative intensity): 355 $[M + H]^{+}$ (28.1); ¹H NMR δ 12.30 (s, NH), 3.34 (s, CH₂).

Anal. Calcd for $C_3H_4N_2S_2F_{10}O_2$: C, 10.17; H, 1.13; N, 7.91; S, 18.08. Found: C, 10.37; H, 1.18; N, 7.81; S, 17.96.

SF₅NHC(O)CH₂C(O)OH: mp 117-119 °C; IR (mull) 3280 (s), 3150-3020 (m), 2990 (w), 2675 (w), 1725 (s), 1690 (s), 1500 (s), 1429 (m), 1391 (m), 1328 (m), 1277 (m), 1165 (s), 945-860 (vs), 769 (m), 695 (m), 600 (vs) cm-'; mass spectrum (70 eV) *m/e* (relative intensity) 229 M⁺ (6.6), 212 [M - OH]⁺ (4.1), 185 [SF, NHC(O)- $CH₃$ ⁺ (6.8), 170 [SF₅NHCO]⁺ (5.6), 169 (5.4), 150 [SF₄NCO]⁺ (4.6) , 128 (43.8) , 127 $[SF_5]^+$ (63.7) , 124 (3.6) , 105 (2.1) , 104 (9.6) , 102 (3.7), 101 (4.2), 89 (31.4), 87 [(HOOCCH₂CO]⁺ (100.0), 76 (9.6), 70 (7.7), 69 (26.8), 67 (9.6), 61 (6.8), 60 (44.2); chemical ionization mass spectrum (isobutane) *m/e* (relative intensity) 230 [M $+ H$ ⁺ (100.0 for $m/e > 200$); ¹H NMR δ 11.33 (br s, NH) 7.85 (br s, OH), 3.30 (s, $CH₂$). -

Preparation of $SF_5NHC(0)CF_2CF_2C(0)NHSF_5$ **and** $SF_5NC(0)$ **-**

 $CF₂CF₂CO$). Thiazyl trifluoride, NSF₃ (10.0 mmol), and HF (0.5) mL, 25 mmol) were condensed into a Kel-F reactor and allowed to react overnight at room temperature before refreezing to -196 °C and condensing in $CIC(O)CF₂CF₂C(O)Cl$ (4.0 mmol). The reaction mixture was then allowed to warm slowly to room temperature. After 4 days the reaction volatiles were stripped onto a NaF scrubber and the remaining solid material (0.44 **g)** was removed to a vacuum sublimator. The white solid SF₅NHC(O)CF₂CF₂C(O)NHSF₅ (0.053 g, 3.0% yield) was obtained after repreated sublimations at 55-60 "C. The volatile materials placed on the NaF scrubber were vacuum

disilled with a -30 °C trap stopping $SF₅NC(O)CF₂CF₂C(O)$ (0.51 g, 43% yield). This cyclic compound is a white solid with \sim 1 torr vapor pressure at room temperature and is extremely air sensitive. Exact mass spectrometry was used along with IR and NMR spectroscopy and **E1** mass spectrometry to confirm the identity of this cyclic imide.

SF₅NHC(O)CF₂CF₂C(O)NHSF₅: mp 180 °C dec; IR (mull) 3265 (s), 2990 (w), 1752 (s), 1494 (s), 1410 (w), 1251 (m), 1185 (s), 1145 (s), 990 (w), 950-850 (vs), 837 (s), 759 (m), 688 (w), 605 (s), 540 (w) cm-'; mass spectrum (70 eV) *m/e* (relative intensity) 440 M+ CF_2CF_2 ⁺ (37.2), 269 (11.2), 170 [SF₅NHCO]⁺ (59.2), 150 $[SF₄NCO]⁺$ (20.6), 127 $[SF₅]⁺$ (100.0), 124 (6.6), 109 (20.0), 108 (1.4) , 105 (2.4) , 104 (4.4) , 103 (2.3) , 100 (26.6) , 89 (13.4) , 70 (2.6) , 69 (2.2); chemical ionization mass spectrum (isobutane) *m/e* (relative intensity) 442 $[M + 2H]^+$ (9.5), 441 $[M + H]^+$ (6.6), 440 M⁺ (100.0); ¹H NMR δ 11.67 (s), NH). (0.3), 297 [SF₅NC(O)CF₂CF₂C(O)]⁺ (16.8), 270 [SF₅NHC(O)-

Anal. Calcd. for C₄H₂N₂S₂F₁₄O₂: C, 10.94; H, 0.45; N, 6.36; S, 14.54. Found: C, 11.71; H, 0.65; N, 6.72; S, 14.50.

 $SF_5NC(O)CF_2CF_2C(O)$: mp 95 °C; IR (gas) 1805 (vs), 1368 (m), 1255 (s), 1182 (s), 11 15 (s), 1070 (s), 1033 (m), 932 (vs), 885 (vs), 832 (w), 788 (w), 595 (s), 480 (m) cm-I; mass spectrum (70 eV) *m/e* 632 (W), 768 (W), 393 (S), 460 (m) cm \cdot ; mass spectrum (70 eV) $m/6$
(relative intensity) 297 M⁺ (0.2), 278 [M – F]⁺ (0.1), 269 [M – CO] (relative intensity) 29/ M⁻ (0.2), 276 [M - F]⁻ (0.1), 269 [M - CO]⁻
(0.5), 250 [M - CO - F]⁺ (0.7), 222 [M - 2CO - F]⁺ (0.5), 150 [SF,NCO] (2.4), 127 [SF,]' (7.3), 119 (2.4), 109 **(3.5),** 100 $[CF₂CF₂]$ ⁺ (100.0), 89 (2.2), 81 (1.8), 70 (6.2), 69 (1.6), 50 (1.4), 47 (1.8), 31 (2.9).

Exact mass for $C_4F_9NO_2S$: calcd, 296.9506; found, 296.9465 \pm 0,0075.

Preparation of SF₅N=C(Cl)CF₃. The compound SF₅NHC(O)CF₃ (1.89 **g,** 7.9 mmol) was sublimed onto PCl, (2.08 **g,** 10.0 mmol) in a 100-mL glass reaction cylinder. Several milliliters of CCl₄ was added, and the reaction vessel was frozen and degassed. After warming slowly to room temperature, the mixture was heated at 60-70 °C for 48 h. Infrared analysis of the reaction volatiles revealed that CCl₄, HCl, POCl₃, and a compound believed to be the expected reaction product¹² were present. There was no evidence for unreacted $SF₃NHC(O)CF₃$. Repeated trap-to-trap distillations and placement on $AICI₃$ to remove any remaining POCl₃⁴⁵ yielded SF₅N=C(Cl)CF₃ (3.8 mmol, 47.8%) yield): IR (gas) 1745 (w), 1690 (m), 1285 (m), 1245 **(s),** 1200 (vs), 973 **(s),** 910 (vs), 885 **(s),** 850 (w), 675 (w), 630 (w), 605 (m) cm-l; mass spectrum (70 eV) m/e (relative intensity) 240, 238 $[M - F]$ ⁺ $(1.0, 4.8), 222$ [M - Cl]⁺ (2.5), 190, 188 [M - CF₃]⁺ (2.5, 6.3), 137, 135 (5.0, 15.6), 127 [SF,]' (100.0), 102 (12.5), 101 (13.8), 89 (32.5), 69 (41.3).

Preparation of SF₅N=C(CI)CH₃. The amide $SF₅NHC(O)CH₃$ (0.20 **g,** 1.1 mmol) and PCls (0.42 **g,** 2.0 mmol) were placed into a 75-mL glass reaction cylinder in an inert-atmosphere box. Carbon tetrachloride (\sim ¹/₂ mL) was added to the reaction cylinder which was then chilled to -196 °C and degassed. The reaction mixture was then warmed to room temperature and heated at $60-70$ °C for 48 h. The product was purified by repeated trap-to-trap distillations and by placement on AlCl₃ to remove any excess POCl₃.⁴⁵ SF₅N=C-(Cl)CH3 (0.2 mmol, 18.2% yield): a colorless liquid with 50 torr vapor pressure at room temperature; IR (gas) 1677 **(s),** 1421 (m), 1330 (m), 1225 (vs), 1133 (m), 998 **(s),** 904 (vs), 870 (vs), 689 (m), 679 (m), 631 (m), 622 (m), 598 **(s)** cm-'; mass spectrum (70 eV) *m/e* (relative intensity) 203 M⁺ (0.2), 202 (0.7), 190, 188 $[M - CH_3]$ ⁺ (0.6, 1.5), ntensity) 203 M (0.2), 202 (0.7), 150, 166 [M - C11₃] (0.0, 1.5),
184 [M - F]⁺ (0.5), 168 [M - Cl]⁺ (38.4), 127 [SF₅]⁺ (100.0), 89 $(22.7), 76$ $(4.7);$ ¹H NMR δ 2.60 $(s, CH_3).$

Preparation of SF₅N=C(CI)C(CI)=NSF₅. The compound SF₅N-HC(O)C(O)NHSF, (1.70 g, **5** mmol) and PC1, (2.08 **g,** 10.0 mmol) were put into a 75-mL glass reaction cylinder in an inert-atmosphere box. The cylinder was degassed and frozen to - 196 °C, and 1-2 mL of CCl, were added. After warming to room temperature the mixture was allowed to stand for 24 h before being heated at 90-100 $^{\circ}$ C for

(45) Van Wazer, J. **R.** "Phosphorus and Its Compounds"; Interscience: New **York, 1958;** Vol. **1,** p 253.

24 h. At this time the volatile gasses were removed to the vacuum line for separtion by trap-to-trap distillation. The product $SF₅N=$ C(CI)C(CI)=NSF₅ (<25% yield) was collected primarily in a -8 °C trap. IR (gas): 1670 **(s),** 1140 (m), 99 (m), 915 (vs), 875 (vs), 825 (m), 735 (m), 600 **(s)** cm-'. Mass spectrum (70 eV) *m/e* (relative intensity): 343, 341 $[M - Cl]$ ⁺ (0.3, 0.7), 272, 270, 268 $[M - SF₄]$ ⁺ (CI)]⁺ (5.7, 15.0), 131 (14.5), 127 [SF₅]⁺ (100.0), 108 (1.5), 89 (25.0). $(0.9, 2.3, 1.4), 233$ $(1.4), 197, 195$ $(0.7, 1.72), 190, 188$ $[\text{SF}_5N=C-$

Preparation of SF₅N=C=NSF₅. The urea SF₅NHC(O)NHSF₅ (3.12 **g,** 10.0 mmol) and PCls (3.12 **g,** 15 mmol) were put into a 100-mL glass reaction vessel in an inert-atmosphere box. The cylinder was degassed and frozen to -196 °C and 2 mL of CCl₄ was added. The reaction vessel **was** warmed slowly to room temperature and heated at 60 °C for \sim 16 h. At this time the volatile reaction products were removed to the vacuum line for trap-to-trap disillation. Even after repeated distillations the product could not be totally separated from the solvent CCl₄. The resulting solution was light orange in color. IR (gas): 2154 **(s),** 1839 (m), 1417 (m), 1355 (m), 1300 (w), 1167 (w), 1029 (m), 993 (m), 918 (vs), 883 **(s),** 805 (vs), 662 (m), 585 (s) cm^{-1} . Mass spectrum (70 eV) m/e (relative intensity): 294 M⁺ $(2.9), 275$ $[M - F]$ ⁺ $(5.8), 230$ $(1.4), 172$ $(4.3), 155$ $(2.2), 153$ $(2.2),$ 127 $[SF₅⁺]$ (100.0), 108 (2.2), 89 (21.7), 64 (8.7), 51 (1.5), 44 (2.9).

Acknowledgment. J.S.T. and J.L.H. gratefully acknowledge Virginia Polytechnic Institute and State University for partial financial support. This work was also supported in part by the Battelle Development Corp. We thank Dr. Harold M. Bell for his assistance in obtaining the computer simulated H NMR spectrum of $SF₅NHC(O)CH=CH₂$.

Registry No. SF,NHC(O)F, 80409-40-1; SF,NHC(O)CF, 80409-41-2; $SF_5NHC(O)CH_3$, 80409-42-3; $SF_5NHC(O)CH=CH_2$, 80409-43-4; $SF₅NHC(O)CH₂CH₂Cl$, 80409-44-5; $SF₅NHC(O)C-$ (O)NHSF₅, 80409-45-6; **[SF**₅NHC(O)]₂CH₂, 80409-46-7; SF₂NH- $C(O)CH₂C(O)OH$, 80409-47-8; $[SF₂NHC(O)CF₂]$ ₂, 80409-48-9; SF₅NC(O)CF₂CF₂C(O), 80409-49-0; SF₅N=C(Cl)CF₃, 2375-40-8; $SF₅N=C(Cl)CH₃$, 80409-50-3; $[SF₅N=C(Cl)]₂$, 2375-46-4; $SF₅$ -N=C=NSF,, 58776-14-0; NSF₃, 15930-75-3; COF₂, 353-50-4; HF, 7664-39-3; CF₃C(O)F, 354-34-7; CH₃C(O)Cl, 75-36-5; SF₅NCO, 2375-30-6; CH₃COOH, 64-19-7; CH₂=CHCOOH, 79-10-7; C- H_2 =CHC(O)Cl, 814-68-6; ClC(O)C(O)Cl, 79-37-8; CH₂(COOH)₂, 141-82-2; ClC(O)CF₂CF₂C(O)Cl, 356-15-0; PCl₅, 10026-13-8.

> Contribution from the Department of Chemistry, Texas Christian University, Fort Worth, Texas 76129

Hypochlorite Oxidation of Morpholine-Borane

IAN WILSON and HENRY C. KELLY*

Received August 18, 1981

Morpholine-borane reacts with sodium hypochlorite in a 1:4 mole ratio wherein three OCl⁻ species are utilized for hydride oxidation and a fourth is consumed in the chlorination of morpholine. The determination of kinetic parameters, based upon the stopped-flow spectrophotometric measurement of the rate of disappearance of OCl⁻ at 290 nm (pH 9-11), is complicated by these consecutive competitive reactions of hypochlorite. At a given pH, the second-order rate constant for the reaction of OCl⁻ with morpholine is about 10³ times greater than that for attack of hypochlorite on amine-borane; thus, a reliable determination of the latter constant was based upon "initial rate" studies under pseudo-first-order conditions involving a large stoichiometric excess of morpholine-borane. The rate of reaction of hypochlorite with amine-borane is also first order in hydrogen ion and is subject to a normal substrate isotope effect with $O(CH_2)$ ₄NH-BH₃ reacting about 1.6 times more rapidly than $O(CH_2)_4NH\cdot BD_3$. At a given lyonium ion concentration, the reaction is enhanced by a factor of about 3.5 in D_2O . It is proposed that the rate-limiting step involves oxidative attack of hypochlorous acid at a boron-hydrogen bond in the amine-borane and that subsequent oxidation of the two remaining hydridic hydrogen atoms is rapid relative to the chlorination of morpholine. The inverse solvent isotope effect is attributed to a higher concentration of DOC1 in $D₂O$ relative to that of HOCl in normal water at a given $pD(pH)$, but is is likely that this influence is partially offset by a normal secondary isotope effect associated with attack of HOCl (DOC]) at the B-H bond. **A** four-center activated complex involving the elements 0, C1, B, and H that is formally similar to other transition-state configurations proposed for selected reactions of amine-boranes is considered.

The relatively high solubility of morpholine-borane in water $¹$ </sup> and the high level of kinetic stability displayed by its solutions² have made this reagent an attractive source of hydridic hydrogen for reactions in aqueous media. Studies of the